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Textbook, Reference and Lecture Notes
 Textbook:

 “ Probability and Stochastic Processes: A Friendly Introduction for 
Electrical and Computer Engineers”, the 3rd Edition, by Roy D. 
Yates and David J. Goodman   (John Wiley & Sons), 2015. (滄海
書局代理)

 References:
 “Introduction to Statistical Pattern Recognition” by Keinosuke Fukunaga, 

Academic Press, 2nd edition,1990.
 “Introduction to Probability and Statistics:  for Engineering and the 

Computing Sciences ”, by J. Susan Milton, Jesse C. Arnold, Liu Kwong
Ip, the McGraw Hill  companies.

 “R in action: data analysis and graphics with R”, 2nd edition
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Probability 
 Probability：possible, probable, probably

 The meaning of probability is a question that has occupied 
mathematicians, philosophers, scientists and social 
scientists for hundred of years.

 Probability is the measure of the likelihood that an event 
will occur, for example, probability of precipitation (降雨機
率).

 Probability is quantified as a number between 0 and 1, 
where 0 indicates impossibility and 1 indicates certainty.

 The higher the probability of an event, the more certain that 
the event will occur. 
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Probability 
 Probability theory is applied in everyday life in risk 

assessment and modeling. 
 The insurance industry and markets use actuarial science to 

determine pricing and make trading decisions. 
 Governments apply probabilistic methods in environmental 

regulation, entitlement analysis (Reliability theory of aging and 
longevity), and financial regulation.

 Probability theory is the basis for statistical pattern 
recognition and machine learning.

 Bayes decision rule is the BEST any classifier can do. 

© 2025 by Jiunn-Lin Wu



NCHU CSE© 2025 by Jiunn-Lin Wu

Pattern Recognition / Conditional Probability

 Sorting incoming Fish on a conveyor according to species 
using optical sensing.
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Pattern Recognition
 Pattern recognition is the study of how machines can

 observe the environment,
 learn to distinguish patterns of interest,
 make decisions about the categories of  the patterns.
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Examples of PR Problems
 Machine vision

 Visual inspection, ATR
 Imaging device detects ground target
 Classification into “friend” or “foe”

 Character recognition
 Automated mail sorting, processing bank checks
 Scanner captures an image of the text
 Image is converted into constituent characters

 Computer aided diagnosis
 Medical imaging, EEG, ECG signal analysis
 Designed to assist (not replace) physicians

 Speech recognition
 Speech recognition / speaker identification
 Microphone records acoustic signal
 Speech signal is classified into phonemes and/or words
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Statistical Signal Processing
 Probability theory is important in the signal processing,   

communication, and data compression fields. 
 Statistical signal processing – linear filtering
 Lossless data compression – information theory

 Correlation classifier for colored noise
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Course Outlines
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1. Experiments, Models and Probabilities
 Applying set theory to probability

 Experiment, outcome, sample space, event

 Probability axioms

 Conditional probability
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Classification
 Select the length of the fish as a possible feature for 

discrimination.

 The value marked l* will lead to the smallest number of 
errors, on average.
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Classification
 The length is a poor feature alone!

 Select the lightness as a possible feature.



NCHU CSE

Bayes’ Theorem
 Law of Total Probability

 Bayes’ Theorem

 Bayes decision rule is the BEST any classifier can do. 
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Bayesian Decision Theory
 State of nature

 w=w1 for sea bass and w=w2 for salmon

 A priori probability
 P(w1): the next fish is sea bass
 P(w2): the next fish is salmon
 These priori probabilities reflect our prior knowledge of how likely 

we are to get a sea bass or salmon before the fish actually 
appears.

 P(w1) + P(w2) = 1 (exclusivity and exhaustivity)
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Decision Rule
 If a decision must be made with so little information (only 

prior information), it seems logical to use the following 
decision rule:

Decide w1 if P(w1)> P(w2); otherwise decide w2

 If P(w1)=P(w2), we have only a fifty-fifty change of being 
right. 
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Class-Conditional Probability Density
 Different fish will yield different lightness reading, and we 

express this variability in probabilistic terms.

 Class-conditional probability density: p(x|w)

 The probability density function for x give that the state of 
nature is w.



NCHU CSE© 2025 by Jiunn-Lin Wu

Class-Conditional Probability Density
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Bayesian Decision Theory
 Suppose that we know both the prior probabilities and the 

conditional densities,

Decide w1 if P(w1|x)> P(w2|x); otherwise decide w2

 Bayes formula

evidence
priorlikelihoodposterior 



)(
)()|(

)|(
xp
wPwxp

xwP jj
j  




2

1
)()|()(

j
jj wPwxpxp

NCHU CSE© 2025 by Jiunn-Lin Wu

Bayesian Decision Theory
 Posterior (a posteriori probability): P(wj|x)

 The probability of the state of nature being wj given that feature 
value x has been measured.

 Likelihood: p(x|wj)
 The likelihood of wj with respect to x
 A term chose to indicate that, other things being equal, the 

category wj for which p(x|wj) is large is more “likely” to be the true 
category.

 The product of the likelihood and the prior probability is 
most important in determining the posterior probability.
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Bayesian Decision Theory—Posterior
 Evidence: p(x)

 A scale factor that guarantees that the posterior 
probabilities sum to one, as all good probabilities must.
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Bayesian Decision Theory
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2. Sequential Experiments
 Tree diagrams

 The tree for the two-light experiment is shown on the left.

 Independent Trials
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3. Discrete Random Variables
 We examine probability models that assign numbers to the 

outcomes in the sample space.

 When we observe one of these numbers, we refer to the 
observation as a random variable.

 Families of discrete random variables:
 Bernoulli (p) Random Variable
 Geometric (p) Random Variable
 Binomial (n; p) Random Variable
 Pascal (k; p) Random Variable
 Discrete Uniform (k; l) Random Variable
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4. Continuous Random Variables
 Probability density function/cumulative distribution function

 Families of Continuous Random Variables:
 Uniform Random Variable
 Exponential Random Variable
 Erlang Random Variable
 Gaussian Random Variables
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Image Processing :Some Important Noise PDFs
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Some Important Noise PDFs
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Some Important Noise PDFs
 The salt-and-pepper appearance of the image corrupted by 

impulse noise is the only one that is visually indicative of 
the type of noise causing the degradation.
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5. Multiple Random Variables
 We consider experiments that produce a collection of 

random variables,                        , where n can be any 
integer.

 For most of this chapter, we study n = 2 random variables: 
X and Y . A pair of random variables is enough to show the 
important concepts and useful problem solving techniques.
 Joint Cumulative Distribution Function
 Joint Probability Mass Function
 Marginal PMF
 Joint Probability Density Function (PDF) 
 Marginal PDF

 Independent Random Variables
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6. Probability Models of Derived Random Variables

 There are many situations in which we observe on or more 
random variables and use their values to compute a new 
random variable.

 PMF of a Function of Two Discrete Random Variables

 Functions Yielding Continuous Random Variables

 Functions Yielding Discrete or Mixed Random Variables

 Continuous Functions of Two Continuous Random 
Variables

 PDF of the Sum of Two Random Variables
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7. Conditional Probability Models
 In many applications of probability, we have a probability model of an 

experiment but it is impossible to observe the outcome of the 
experiment. Instead we observe an event that is related to the 
outcome. (Example 7.6)

 Conditioning a Random Variable by an Event

 Conditional Expected Value Given an Event

 Conditional Variance and Standard Deviation

 Conditioning Two Random Variables by an Event

 Conditioning by a Random Variable

 Conditional Expected Value Given a Random Variable

 Bivariate Gaussian Random Variables: Conditional PDFs
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8. Random Vectors
 Random Vector Probability Functions

 Random vector with n variables

 Independent Random Variables and Random Vectors

 Functions of Random Vectors

 Expected Value Vector and Correlation Matrix

© 2025 by Jiunn-Lin Wu
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Two Features
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Probability Theory
 Expectations, mean vectors
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Probability Theory
 Covariance matrices

 It is symmetric  
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Covariance Matrix
 The covariance matrix indicates the tendency of each pair 

of features (dimensions in a random vector) to vary 
together, i.e., to co-vary*

 The covariance has several important properties:
 If xi and xk tend to increase together, then cik>0
 If xi tends to decrease when xk increases, then cik<0
 If xi and xk are uncorrelated, then cik=0
 |cik|≤σiσk, where σi is the standard deviation of xi

  iiii xVARc  2

NCHU CSE© 2025 by Jiunn-Lin Wu

Covariance Matrix
 The covariance terms can be expressed as

 where ρik is called the correlation coefficient

kiikikiii candc   2
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Probability Theory

NCHU CSE

9. Sums of Random Variables
 Random variable of the form 𝑊௡ ൌ 𝑋ଵ ൅ 𝑋ଶ+…+𝑋௡ appear 

repeatedly in probability theory and application.

 The Central Limit Theorem states that given a distribution 
with a mean µ and variance σ2, the sampling distribution of 
the mean approaches a normal distribution with a mean (µ)
and a variance (σ2) as N, the sample size, increases.
 No matter what the shape of the original distribution is, the 

sampling distribution of the mean approaches a normal distribution.
 Keep in mind that N is the sample size for each mean and not the 

number of samples.
 A uniform distribution is used to illustrate the idea behind the 

Central Limit Theorem.
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Central Limit Theorem
Five hundred experiments were performed 
using the uniform distribution

 For N=1, one sample was drawn from the 
distribution and its mean was recorded 
(for each of the 500 experiments).

 Obviously, the histogram shown a uniform 
density.

 For N=4, 4 samples were drawn from the 
distribution and the mean of these 4 
samples was recorded (for each of the 
500 experiments).

 The histogram starts to show a Gaussian 
shape.

 And so on for N=7 and N=10.
 As N grows, the shape of the histograms 

resembles a Normal distribution more 
closely.
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10. The Sample Mean
 In practice, we encounter many situations in which the probability 

model is not known in advance and experimenters collect data in order 
to learn about the model. (Statistical inference)

 Expected Value and Variance

 Deviation of a Random Variable from the Expected Value

 Chebyshev Inequality

 Laws of Large Numbers

 Point Estimates of Model Parameters
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11. Hypothesis Testing
 Maximum A posteriori Maximum A posteriori

 Maximum Likelihood Decision Rule

 Minimum Cost Test

 Neyman Pearson Test
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12. Estimation of a Random Variable
 We use observations to calculate an approximate value of 

a sample value of a random variable that has not been 
observed.

 The random variable of interest may be unavailable 
because it is impractical to measure (for example, the  
temperature of the sun), or because it is obscured by 
distortion (a signal corrupted by noise), or because it is not 
available soon enough.

 We refer to the estimation of future observations as 
prediction.

 A predictor uses random variables observed in early 
subexperiments to estimate a random variable produced 
by a later subexperiment.© 2025 by Jiunn-Lin Wu
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13. Stochastic Processes
 When we study stochastic processes, each observation 

corresponds to a function of time. 

 The word stochastic means random. The word process in 
the context means function of time.

 Therefore, when we study stochastic processes, we study 
random function of time.
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13. Stochastic Processes


 Conceptual representation of a random process 
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Course Outlines (Optional)
 Signal Processing Supplement and Markov Chains 

Supplement are the final chapters, and available at the 
book’s website.

 The Markov model can be represented by the state 
diagram.
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R Language
 Software for Statistical Data Analysis

 Programming Environment

 Interpreted Language

 Data Storage, Analysis, Graphing

 Free and Open Source Software

 Applications
 Machine Learning
 Regression and Classification
 Big Data
 Data Mining 
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Grading
 Homework 20%

 Quizzes 20%

 Mid Exam 30%

 Final Exam 30%


